Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives.

نویسندگان

  • Shashwath A Meda
  • Adrienne Gill
  • Michael C Stevens
  • Raymond P Lorenzoni
  • David C Glahn
  • Vince D Calhoun
  • John A Sweeney
  • Carol A Tamminga
  • Matcheri S Keshavan
  • Gunvant Thaker
  • Godfrey D Pearlson
چکیده

BACKGROUND Schizophrenia and bipolar disorder share overlapping symptoms and genetic etiology. Functional brain dysconnectivity is seen in both disorders. METHODS We compared 70 schizophrenia and 64 psychotic bipolar probands, their respective unaffected first-degree relatives (n = 70, and n = 52), and 118 healthy subjects, all group age-, gender-, and ethnicity-matched. We used functional network connectivity analysis to measure differential connectivity among 16 functional magnetic resonance imaging resting state networks. First, we examined connectivity differences between probands and control subjects. Next, we probed these dysfunctional connections in relatives for potential endophenotypes. Network connectivity was then correlated with Positive and Negative Syndrome Scale (PANSS) scores to reveal clinical relationships. RESULTS Three different network pairs were differentially connected in probands (false-discovery rate corrected q < .05) involving five individual resting-state networks: (A) fronto/occipital, (B) anterior default mode/prefrontal, (C) meso/paralimbic, (D) fronto-temporal/paralimbic, and (E) sensory-motor. One abnormal pair was unique to schizophrenia, (C-E), one unique to bipolar, (C-D), and one (A-B) was shared. Two of these three combinations (A-B, C-E) were also abnormal in bipolar relatives but none was normal in schizophrenia relatives (nonsignificant trend for C-E). The paralimbic circuit (C-D), which uniquely distinguished bipolar probands, contained multiple mood-relevant regions. Network relationship C-D correlated significantly with PANSS negative scores in bipolar probands, and A-B with PANSS positive and general scores in schizophrenia. CONCLUSIONS Schizophrenia and psychotic bipolar probands share several abnormal resting state network connections, but there are also unique neural network underpinnings between disorders. We identified specific connections that might also be candidate psychosis endophenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging

Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...

متن کامل

Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia.

The brain's default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component...

متن کامل

Neural complexity as a potential translational biomarker for psychosis.

BACKGROUND The adaptability of the human brain to the constantly changing environment is reduced in patients with psychotic disorders, leading to impaired cognitive functions. Brain signal complexity, which may reflect adaptability, can be readily quantified via resting-state functional magnetic resonance imaging (fMRI) signals. We hypothesized that resting-state brain signal complexity is alte...

متن کامل

Alterations in Hippocampal Functional Connectivity in patients with Mesial Temporal Sclerosis

Introduction: Medial temporal sclerosis (MTS) is a form of mesial temporal lobe epilepsy (mTLE). It is typically characterized by structural alterations in hippocampus (HC) and related mesial temporal lobe (MTL) network. Resting state functional connectivity (RSFC) is considered an ideal technique in quantifying the dysfunction and maladaptation in MTL network. It is well- dem...

متن کامل

Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: a meta-analysis of resting-state functional magnetic resonance imaging studies

OBJECTIVE The localized dysfunction of specialized brain regions in schizophrenia patients and their unaffected relatives has been identified in a large-scale brain network; however, evidence is inconsistent. We aimed to identify abnormalities in the localized connectivity in schizophrenia patients and their relatives by conducting a meta-analysis of regional homogeneity (ReHo) studies. METHO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological psychiatry

دوره 71 10  شماره 

صفحات  -

تاریخ انتشار 2012